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Binary correlations are a recognized part of the pair density operator, but the 
influence of binary correlations on the singlet density operator is usually not 
emphasized. Here free motion and binary correlations are taken as independent 
building blocks for the structure of the nonequilibrium singlet and pair density 
operators. Binary correlations are assumed to arise from the collision of two 
free particles. Together with the first BBGKY equation and a retention of all 
terms that are second order in gas density, a generalization of the Boltzmann 
equation is obtained. This is an equation for the free particle density operator 
rather than for the (full) singlet density operator. The form for the pressure 
tensor calculated from this equation reduces at equilibrium to give the correct 
(Beth-Uhlenbeck) second virial coefficient, in contrast to a previous quantum 
Boltzmann equation, which gave only part of the quantum second virial 
coefficient. Generalizations to include higher-order correlations and collision 
types are indicated. 
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1. I N T R O D U C T I O N  

The Bol tzmann  equat ion  was first in t roduced (1~ to take into account  how 
binary  collisions affect the m o m e n t u m  dis t r ibut ion of a mona tomic  ideal 

gas. Q u a n t u m  system have two nonclassical  features that  complicate the 
Bo l t zmann  equat ion.  The first is the n o n c o m m u t a t i o n  of posi t ion and 

momen tum,  which necessitates the classical d is t r ibut ion funct ion being 
replaced by a density operator,  which is also required for the description 

of molecular  systems with internal  (rotat ion,  vibrat ion,  etc.) states. Such 
effects are central  to this paper. The other q u a n t u m  effect is the role of 
exchange symmetry  (Bose-Eins te in  or Fermi-Di rac) .  For  low density and  
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moderate temperatures these latter effects play a very minor role and in the 
present work they will be ignored. Thus, it is assumed throughout this 
work that the system obeys Boltzmann statistics. 

If degenerate internal molecular states are present, it is necessary to 
have an appropriate collision (super)operator for the Boltzmann equation. 
With a comparison to classical mechanics in mind, Waldmann, (2) and 
independently the author, ~3) obtained a form for this collision term in 
which the molecular state is described by a quantity which is 
simultaneously a density operator in internal states and a Wigner 
function (4) in translational states. The formulation of spin relaxation (5~ and 
the resultant expressions for the spin relaxation rates was one of the early 
uses for this equation. However, total angular momentum was not 
conserved, because the loss of (e.g., nuclear) spin angular momentum could 
not be accounted for by an increase of translational angular momentum. 
The reason for this failure is essentially because the form of the collision 
term that was introduced approximates both colliding particles as being at 
the same (macroscopic) position. Without introducing this localization 
approximation, the quantum Boltzmann equation can be written in 
operator form and all of the operators entering into this equation conserve 
angular momentum. Thus, the lack of angular momentum conservation is 
associated with the localization assumption of the collision term rather 
than any inherent difficulty with binary collisions or with the molecular 
chaos assumption used in factoring the pair density operator. With this 
motivation, the purely operator form for the quantum Boltzmann equa- 
tion (6) was taken as primitive and certain properties of this equation 
described. (6'7) Yvon (8) arrived at the same operator equation by different 
arguments. While the conservation of angular momentum requires the 
retention of some of the nonlocality of the collision process, an expansion 
containing the minimal amount of nonlocality was introduced: (7) But to the 
same order of collision nonlocality, the kinetic energy is not conserved and 
the equation of motion (momentum balance) derived from the Boltzmann 
equation with retention of the same degree of nonlocality (7) gives an 
expression for the pressure that has a collisional contribution. 

Energy conservation was attained (7) by adding an expression for the 
rate of change of the potential energy, evaluated within the binary collision 
regime. At equilibrium, the only flux that is nonzero is the momentum flux 
(pressure tensor). For the expression derived, (7) the equilibrium pressure 
has the classic contribution nkT due to kinetic motion and a term quad- 
ratic in the density that reduces in the classical mechanics limit to the 
correct second virial coefficient contribution. However, for quantum 
systems, the Beth-Uhlenbeck (9'1~ form for the second virial coefficient is 
not obtained. Rainwater and Snider (11) showed that the quantum correc- 
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tion to the equilibrium momentum distribution has exactly the form 
needed to account for the difference between the expression for the pressure 
derived from the Boltzmann equation/7~ and the Beth Uhlenbeck formula. 
The first mention of such quantum corrections to the kinetic pressure seem 
to be by deBoer (12~ and by Green. (13) Recently, Lalo~ and Mullin (14) have 
pointed out that since the second virial coefficient expression derived from 
the quantum Boltzmann equation is not correct, then the quantum 
Boltzmann equation (6) is of questionable validity in correctly describing 
nonlocal collision processes. Another difficulty that they (14~ raise is the lack 
of consistency between the approximate form for the pair density operator 
introduced (3'6) to close the BBGKY (15 18) hierarchy in deriving the 
quantum Boltzmann equation and the singlet density operator. These are 
valid criticisms. The question about the second virial coefficient has never 
been addressed from a kinetic theory point of view, while for the form for 
the pair density operator, my standard reply has been that the form used 
for the pair density operator in the collision term is valid only in the midst 
of a collision and, moreover, is the quantum analogue of the Bogolubov (15) 
initial condition. But surely it is possible to do better than this, which is 
what is attempted in the present paper. While the role of density correc- 
tions was not of interest in the initial formulation of the quantum 
Boltzmann equation, (3'6~ here it is shown how all terms to second order in 
gas density can be retained in an equation of Boltzmann type (which 
includes all equilibrium properties to second order in density). Triple colli- 
sions are not discussed, but some indication is given as to how the present 
treatment could be generalized to higher density. 

At all but the lowest density, particles are correlated, especially at 
equilibrium. The present approach is based on the effect such correlations 
have on the various reduced density operators of a dilute gas system. 
Standard equilibrium cluster theory (I~ 21) is used in Section 2 to provide 
a motivation for relating nonequilibrium reduced density operators and 
particle correlations. Only binary correlations are considered, since the 
object is to describe low-density behavior. The approach taken in order to 
obtain a kinetic equation is to first express the singlet and pair density 
operators in terms of quantities representing "independent" free particle 
motion and binary correlations. Then, since the correlations in a dilute gas 
are considered to be weak (bound states are disallowed in the present 
treatment), and to arise only from (binary) collision processes, it is 
reasonable to expect that the correlations are determined by the free par- 
ticle density operator. An ansatz for such a relation is given in Section 3 
and a moderately dense gas quantum Boltzmann equation is "derived" 
from these considerations. This is viewed as an equation that is fully 
consistent to second order in particle density. In comparison with the 



446 S n i d e r  

previously presented quantum Boltzmann equation, 16) the present equation 
contains density corrections to the free motion. The equations of change 
deduced from this equation are discussed in Section 4. 

A distinction between free motion and interacting motion has been 
made by Lalo~ and co-workers/22-24) Their objective is very much the same 
as that presented in this paper. In fact, their paper is the immediate motiva- 
tion for the present work and their conceptual distinction between full and 
free density operators directed my thinking. However, their detailed 
implementation of these ideas is very different from that given here. Essen- 
tially, they modify the pair density operator (more precisely, the equivalent 
Wigner (4) function) into a free (pair) Wigner function and use this as the 
prime quantity to obtain a Boltzmann collision integral. In contrast, the 
present approach emphasizes a free singlet density operator together with 
binary correlations and how the structure of the singlet and pair density 
operators are influenced by these two quantities. 

2. B I N A R Y  C O R R E L A T I O N S  

The immediate objective here is to arrive at a reasonable ansatz for the 
structure of the reduced density operators describing a dilute gas in which 
binary correlations are important. In a nonequilibrium situation, it is not 
clear exactly how this should be done. The initial motivation for the 
structure that is presented was by analogy with the structure of the density 
operators used in formulating a kinetic theory of recombination and 
decay. (25)'2 In that work it was recognized that a bound state is described 
by part of the pair density operator, while the unbound (free) particles 
are described by part of the singlet density operator. To sort out the form 
of the reduced density operators, an ideal gas mixture of monomers (free 
particles) and dimers (bound pairs) was envisaged. For an N-particle 
system in which M of the particles are free and 2D particles are bound 
(N= M +  2D), all possible permutations of which particles are bound and 
which are free were considered. The immediate structure that results is that 
the singlet density operator p(1) is related to the free Ps and bound Pb 
density operators by 

p] l )  = P f l  + T r z p b 1 2  (2.1) 

and the pair density operator is 

p ( 2 )  _ n(1).q (1) _}_ Pb12 12 - - V 1  V 2  (2.2) 

2 The normalization of the pair density operator in ref. 25 is one-half of that used here. 
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In the present case, there are no bound states (assumed), but there are 
correlated pairs. Thus, by analogy, it is postulated that the appropriate 
structure for the reduced density operators in the same as above, but a 
correlation density operator p, replaces the bound-state operator and the 
notion of being a free particle is that of being uncorrelated to any other 
particle in the system; thus, 

and 

p~l) = P fl + Tr2p~12 (2.3) 

t 0 ( 2 )  - -  t ~ ( 1 ) n ( 1 )  
1 2 - - V 1  U 2  + P c l 2  (2.4) 

Since particles can be negatively correlated, it is not possible to rationalize 
this structure by the same arguments, namely as a mixture of free particles 
and correlated pairs, as was made for the bound-state case. 

An alternative motivation for the structure proposed in Eqs. 
(2.3)-(2.4) is obtained by studying the correlation structure of a large 
system at equilibrium. This is done first for an N-particle system (canonical 
ensemble) and then for a grand canonical ensemble. Binary correlations are 
emphasized and higher correlations (between more than two particles) are 
ignored. The resulting structure of the reduced density operators is found 
to be of precisely the above form. Aspects of the well-known structure of 
the cluster expansions (~~ are first reviewed and the consequences of 
retaining only binary correlations emphasized. 

For an N-particle system, the equilibrium density operator is 

p(N) = exp( -- H(N)/kT)/(N! QN) 

involving the N-particle Hamiltonian H (N), Boltzmann's 
absolute temperature T, and the partition function 

QN = ~.V Yr exp \ k T  J 

(2.5) 

constant k, 

(2.6) 

associated with the The free particle and multiparticle correlations 
N-particle system are exhibited by rewriting the Boltzmann factor in terms 
of the operator equivalent of the Ursell functions, (26) 

N 

e-"(N)/*T= l-I" Z u 2) [1 
i = 1  l<~i<j<~N k ~ i , j  

+ y" rr(2)rr(2) e-~)/~r + 
1 ~ i < j ~ N  vT~i,j,k,l 

i<k<l<.N; lCj  

(2.7) 

822/61/1-2-29 
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where the Ursell operators are defined by recursion on N and in particular 
the pair Ursell operator is 

U ( 2 )  _ e x p (  - H~)/kr)  - e x p (  - K~)/kT) 12 (2.8) 

with k'(~)= r4(1)+ t4~) denoting the free pair Hamiltonian. If it is assumed ~ 1 2  - -  * *  1 ~ 2  

that binary correlations are important but that ternary and higher-order 
correlations (Ursell operators) are negligible, then only the terms involving 
U ~2) and the single (free) particle Boltzmann factors in the Ursell expan- 
sion, Eq. (2.7), need be retained. The general term involves all possible 
permutations with all possible numbers N~ of correlated pairs. Thus, the 
binary correlation approximation to the N-particle Boltzmann factor is 

I N / 2 ]  

e-HIU)/kr~ ~ ~ [I e ;@%r [I U) 2) (2.9) 
Nc=O ~,y i~x  ( jk)~' /  

Here c~ is a listing of which particles are free, while 7 is a listing of which 
Nc pairs are correlated, and there is a sum over all such listings. The upper 
limit [N/2] of the N c sum is the largest integer less than or equal to N/2. 
Within this approximation, the partition function is 

1 [N/2] 

Q N ~ .  Y~ g(N, No) Q~ 2Nc(2Q~)~ (2.10) 
Nc = 0 

where Q1 - T r l  e x p ( -  H~I)/kT) is the one-particle partition function and 

u _  1 [ / - ( 2 )  Q2 = 5Tr12 vl2 

= Q 2 - - 1 2 Q 1 2 =  _ Q 2 B 2 / V  
(2.11) 

is the trace of the binary Ursell operator, which is in turn related to the 
second virial coefficient B 2 and the volume V of the system. The factor 

N! ( N )  (2No)! 
g(N'Nc)=(N-2Nc)!Nc!2Xc- 2Nc No!2 Nc (2.12) 

is the number of ways of having Nc correlated pairs among N particles. 
It is easily verified that the partition functions QN satisfy the recursion 
relation 

NQN = Q, QN-1 + 2Q~QN-2 (2.13) 

within this binary correlation approximation. 
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Reduced density operators for s particles, normalized as Trl . . . .  p(s;N) 
=N!/(N--s)!, are derived from Eqs. (2.5), (2.9), and (2.10) according to 

p ]I;N) ~ N T r  2 ... N p(N) 

_ QN 1 e--H9%r+ QN 2 Tr 2 
QN ON 

U(2) 12 

(2.14) 

and 

p ( 2 ; N )  ~_ N ( N -  1 ) Tr3... N p(N) 12 

__ Q N - - 2  [ - e _ ( ~ l ) +  H,zl))/kr+ U ( 2 ) ]  
O N  12 

~23 e j + Tr34 
QN 

U(2)r]-(2) 13 ~24  

(2.15) 

The recursion relation (2.13) is needed in order to verify that Eqs. (2.14) 
and (2.15) are consistent, namely that 

1 
p ] l ; N )  = N -  1 Tr2 v12r~(2;N) (2.16) 

In the thermodynamic limit, N--* 0% V ~  oe with N / V - n  finite, the ratio 
of partition functions for successive N is related to the absolute activity 2, 
QN-I/QN--~ 2. N O W ,  for large N, the first two reduced density operators 
can be approximated as 

p~l;Jv~ = 2e--H~Ll/kT+ 22 Tr2 //(2) (2.17) ~12  

and 

p(2;N) = p~l;N)p(21;N)+ .~2 12 12 /-/(2) (2.18) 

These have exactly the structure of Eqs. (2.3)-(2.4), but the relation (2.16) 
is valid only to O(1/N), noting that p ( 1 ; N ) i s  normalized to N, while 
Tr 2 U~z)/(N--1) is normalized to Q~/(N-t ) ,  which is finite in the 
thermodynamic limit. These comments follows from the fact that both Q1 
and Q2 v are linearly proportional to the volume V of the system. 

For the grand canonical ensemble, the absolute activity is introduced 
as a fundamental quantity and activity expansions of the reduced density 
operators (26'27~ arise naturally. In this case, the probability of having N 
particles is PN=)~NQx/Z, where 2 is the absolute activity, now an 
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independent variable, and the grand canonical partition function is 3 =  
~'~U 2NQN " Calculations of all observable quantities occur as power series 
expansions in 2, the average number of particles being an especially well- 
known result 

(N)  =~NPN=2Q1 + 2 2 1 2 Q 2 -  Q~] + --. 
x 

= 2 Trt e - ~ > / k r +  2 2 Tr12 r7(2) + ... ~ 1 2  

(2,19) 

The singlet density operator has an analogous expansion, 

p]I;GCE) = ~ Np N Tr2,..., N p(N) 
N 

= 2e-'~]'/kr + 2 2 Tr2 rT(2) q- 2 3 Tr23 rf(3) -~ " ' "  
~ 1 2  ~ 1 2 3  

(2.20) 

whose trace reproduces Eq. (2.19). Higher-order reduced density operators 
have greater structure. For the pair density operator, the leading term is 
obviously proportional to the Boltzmann factor for the pair of particles, 
but the contributions from N >  2 depend on whether both particles appear 
in the same or different Ursell operators. In graph theory terminology, (28) 
all doubly-rooted graphs are required with connectivity of all points to at 
least one root point, but not necessarily to both root points. Since the sum 
of all singly-rooted connected graphs gives the singlet density operator, the 
pair density operator is a product of singlets plus the sum of doubly-rooted 
connected graphs, namely 

p~2;Gce) = ~ N ( N -  1 )P N Trz,...,u p ( N )  
12 

N 

= 1,1"q(1;GCE)'q(1;GCE)I'2 --" 22U~ 2~ + 23 Tr3 fr(3)~123 A--__ . . .  (2.21) 

Within the binary correlation approximation, all Ursell operators for three 
or more particles vanish, so that all these expansions truncate. It follows 
that the first two reduced density operators, Eqs. (2.20)-(2.21), are the 
grand canonical ensemble analogs of Eqs. (2.17)-(2.18). It again 
immediately follows that p]I;GCE) is not just the trace over particle 2 of the 
pair density operator v12"(Z;GCE~, but the difference is related to the dispersion 
in the number of particles in the grand canonical ensemble. In detail, the 
defining relation for p~2;~cE) shows that 

Tr2 V12"q(2;GCE) ~ -  ~N N(N-__N! QN1) PN Yr2- -N e /~m/kv (2.22) 
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differs from p]~;Gce~, Eq. (2.20), by differing N factors. If both quantities 
are multiplied by Z, power series in 2 are obtained and an identity can be 
attained by a suitable choice of differentiating with respect to 2, namely 

Tr2 '~(2;acE) 2 2 ~ /~p(1;Gce)\ (2.23) 

This identity is satisfied in the binary correlation approximation, Eqs. 
(2.17)-(2.18), precisely for the grand canonical ensemble and in the limit of 
large N for the canonical ensemble. This again points to the fact that 
p]I;GCE) and Tr2 n(2;GCE) differ only because of the dispersion in the number v~2 
of particles, or equivalently, in the dispersion of the particle density. 

Within the binary correlation approximation, the grand canonical 
partition function can be readily summed to give 

•= ~ 2NQN = exp(2Q1 + 22Q2 ~) (2.24) 
N 

which is directly related to the activity expansion of the equation of state 
stopping at the second virial coefficient. The average number of particles 
follows from Eq. (2.19), 

( N )  = .~Q1 --b 222Q2 U (2.25) 

I t  is standard to express thermodynamic quantities as density "n" expan- 
sions rather than activity expansions. This involves inverting Eq. (2.25) and 
thus eliminating 2 from the previous expansions. Only one such density 
expansion is discussed here, namely that of the singlet density operator. 
From Eqs. (2.17) and (2.25), it follows that 

p~l)= (N)  e-N"/kr + (N)2 [Tr2  tr(2) 2Q~ -~' /kT] 
Q1 Q2 - 1 2 -  Q, e + .-- 

( N )  ~ ~ % r .  ( N )  2 [-Tr o-~21/kr-2Q2 _~lt/kr] 
- Q i  ~ 7- Q2 [_ 2~ Q1 e + ... (2.26) 

In the density expansion it is seen that only the first term contributes to the 
normalization of the singlet density operator, but it is also emphasized that 
the next term is not just the binary correlation. The activity expansion, on 
the other hand, is directly associated with particle correlations. 

The correlation structure of the singlet and pair density operators is 
explicitly given in equilibrium by Eqs. (2.17)-(2.18) for an N-particle 
system and, as stated, the reduced density operators for the grand canoni- 
cal ensemble have the same structure. This is the structure emphasized at 
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the beginning of this section, Eqs. (2.3)-(2.4), and which is used in the 
following to obtain a density corrected form of the quantum Boltzmann 
equation. 

3. B O L T Z M A N N  E Q U A T I O N  

My view of the philosophy of the Boltzmann equation was stated (6) 
several years ago. This has not changed; as stated then, it is "to consider 
an approximation which incorporates the assumptions: (i) only binary 
collisions are used and these are assumed to occur on a time scale that is 
short compared to both the times between collision zf and the macroscopic 
relaxation time z~ of p; and (ii) the pair density operator factors before a 
collision." These ideas were implemented in a particular way in that paper, 
where the lowest gas density effects were emphasized. In the present work 
this same philosophy is espoused; in particular, only binary collisions are 
considered, but the possibility of density corrections arising within the 
binary collision approach to kinetic phenomena is taken into account. The 
method adopted here is to emphasize the role of binary correlations within 
the binary collision regime while completely ignoring three-particle correla- 
tion and/or collision effects. 

The starting point for the "derivation" of the Boltzmann equation is 
the first member of the BBGKY (15-~8~ hierarchy, 

ih - -~ -=  a;]x) [H} '), p]l)]_ + Tr2[V,2, v,2~(2)qJ- (3.1) 

where V12 =--12r4(=)-H~ 1)- 14(1)-j2 is the interaction potential for particles 1 
and 2, assumed short ranged for the validity of the following arguments. In 
order to close this equation, another relation between p(1) and p(2) is 
required. The argument used here to obtain a closure relation follows 
closely those given by Green. (29) This requires: first, assuming that only a 
pair of particles are interacting; second, following the binary collision 
trajectory back in time to before the collision began; third, assuming the 
particles are independent at this precollision time; and last, connecting the 
single-particle probabilities at the precollision time to the time t of interest 
by free particle evolution. As a consequence, the pair density operator is 
standardly written (3'6"8) in terms of a product of singlets, 

p(2)_ c~ ~(I)~(I~o, (3.2) 
12 - - ~ 1 2 h ' 1  U2 ~ 1 2  

where g? is the pair Mr operator, which essentially converts a free 
particle wavefunction into an interacting wavefunction by tracing freely 
back in time and then forward an equal amount of time according to inter- 
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acting motion. It is this closure that was used in our previous deriva- 
tions (3'6) of the quantum Boltzmann equation. 

As stated in the previous paragraph, the Mr operators convert (a 
pair) of free particles into an interacting state. Here it is proposed to take 
this statement more literally--since the particles are to be free before the 
Mr operators act on them, they should not be correlated with any other 
particles and thus the singlet density operators upon which the Mr 
operators are to act should be the free states PF rather than the full singlet 
density operator p(1). Thus, in closing the BBGKY hierarchy, the pair 
density operator used in evaluating the collision term should be 

p ( 2 )  1- 
12 = ~'~12P.flPf2~"~i2 (3.3) 

rather than Eq. (3.2). But the closure of the BBGKY hierarchy should be 
made in a manner that is consistent to second order in density! In par- 
ticular, the time and free flow contributions to the first BBGKY equation 
involve explicitly the full singlet density operator p(1), which must be 
distinguished from the free part pf of the singlet density operator. This is 
where Eq. (2.3) enters. 

With this motivation, the correlation structure of the singlet and pair 
density operators is again discussed. At the Boltzmann equation level of 
description of a gas, the independent (free) motion of the particles is 
dominant. Thus, the present work takes as central the free density operator 
Ps, and it is then required to find an equation governing how p/evolves in 
time. Correlations arise through bimolecular encounters (collisions), and 
from the arguments leading to Eq. (3.3), it is proposed to take the 
correlated part of the pair density operator as 

P c l 2  = ~ Q 1 2 P f l  P f 2 ~ 2  -- P f l  P f2 (3.4) 

Note that it is only free particles that should be correlated by binary 
collision dynamics. To elaborate on this argument, since the correlated 
contribution to p~) has a ghost interacting with the particle being 
described, it is unreasonable that such a combination be further correlated 
(to a third particle) by a binary collision process. 

Now the full singlet p(1) and pair pC2) density operators are given in 
terms of the free density operator by Eqs. (2.3) and (2.4). In a way the free 
singlet density operator gets dressed or renormalized by binary correlations. 
On inserting all terms up to second order in the density into the first 
BBGKY equation, it is noted that for the pair density operator, Eq. (2.4), 
the product of singlet density operators is to this order in density just the 
product of the free operators, so that 

p ( 2 )  __ ~ ( 1 ) n ( l )  _[_ P c l 2  ~ ~'~12PJ'lPf2~"~2 (3.5) 12 - - / " 1  /-'2 
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and this is exactly Eq. (3.3), which is to be used in the collision term. The 
density corrected Boltzmann equation is thus given to second order in 
density as 

ih ~Pfl + ih 0 Tr2(g212pf 1 pf2 ~2~2 --pf~ Pf2) 
Ot & 

= [H~ I), pf, ]_ -I- [H I  '), Tr2(f212pf, pf2(2~2- Pr, Pr2)]- 

+ Tr2 [ V12, "QI2 Pf l  Pf2 ~2 It2] - (3.6) 

This is a closed equation for the free singlet density operator pf, in terms 
of which the full singlet and the pair density operators are determined by 
Eqs. (2.3), (2.4), and (3.4). 

For sufficiently low density, the correlation contribution to the full 
singlet density operator should be negligible. Under these conditions, the 
free and full singlet density operators can be equated and the correlation 
corrections for the time and free flow terms in Eq. (3.6) dropped, to arrive 
at the usual quantum Boltzmann equation./6) As the density increases, p(1) 
needs to be distinguished from pf and the time and free motion differences 
between these two quantities play a role. At equilibrium, it is the free 
density operator that is Maxwellian. The intertwining property of the 
Mr operator 

H(2)f2 = g-2K (2) (3.7) 

implies that at equilibrium the pair correlation operator of Eq. (3.4) 
becomes proportional to the second Ursell operator, Eq. (2.8), it being 
assumed in the present work that the potential does not support any 
bound states. In this way, both the singlet and pair density operators as 
defined for the density corrected quantum Boltzmann equation reduce at 
equilibrium to their exact equilibrium forms. Of particular note is the fact 
that the correlation correction to the singlet density operator dominates the 
large-momentum behavior of the distribution function for quantum 
systems, (1~'3~ but merely renormalizes the Maxwellian if the system obeys 
classical mechanics. That classically, both the free and full density matrices 
(classical ly~istr ibution functions) are Maxwellian may be the reason that 
the singlet density operator is usually associated with free particles. 

The distinction, Eq. (3.5), between the full pair density operator and 
the usual r collision ansatz, Eq. (3.2), solves the first of Lalo~ and Mullin's 
criticisms ~14) and I believe also the second. Their third criticism concerning 
the form of the second virial coefficient is addressed in the following 
section. 
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4. EQUATIONS OF CHANGE 

For a one-particle observable ~b, usually a density in gas kinetic theory 
(physical attribute per unit of volume in position space), it is desirable to 
have an equation of change for its expectation value (~b). This can be 
obtained exactly from the first BBGKY equation (3.1), and approximately 
from the Boltzmann equation (3.6), the latter being carried out here. 

It is first emphasized that the expectation value for a one-particle 
observable is found from the full singlet density operator p(~). Since this 
consists of the two parts, free and correlated, the expectation value can be 
apportioned according to 

(~b) = (~b)f+ (~b)< (4.1) 

with 

( ~ b ) / - T r ,  ~b~ pf~ (4.2) 

and a corresponding definition for the correlated contribution. Since the 
time derivative and free motion parts of the Boltzmann equation involve 
the full singlet density operator, the equation of change for (~b) can be 
written 

~t ~-  = ~  ([~b, H ~)] V12] t (4.3) ) + ~ Trmz[~bl, QI2PflPT2g?12 

Allowance has been made for the possibility that ~b has an explicit time 
dependence. Particular cases are now considered. 

First is the number density n, for which the observable operator is the 
Dirac delta function ~ b l = 5 1 = 5 ( r - r i ) .  Here r denotes the position 
variable at which the particle is to be observed, while r~ is the position 
operator for particle 1. Since this operator commutes with the (local) 
potential, there is no collision contribution to the equation of change. On 
the assumption that the single-particle Hamiltonian has the standard form 

H~ 1)= p2 (4.4) ~m + Hint, 1 

in terms of momentum and internal variables, the free motion commutator 
can be evaluated and the well-known equation of continuity 

m ~  0t - V . ( n v o )  (4.5) 
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results with stream velocity defined by 

1 
nv 0 -= Tr~ ~mm (P131 + 61Pl)P~ 1/ (4.6) 

It is moreover important to recognize that the particle density consists of 
two parts, n = ny + n~., corresponding to the free and correlated parts of the 
singlet density operator. 

At equilibrium in a homogeneous system, the free density operator 
becomes the Boltzmann distribution (Maxwellian in momentum) 

Pfl = nfA3 e H~'/kT (4.7) 
qint 

where A - h/(2r~mkT) 1/2 is the thermal deBroglie wavelength and qint in the 
internal state partition function. The correlation contribution to the 
particle density becomes proportional to the second virial coefficient, 

( n f A S ~  2 
nc = Tr12 31P,12 = Trl2 31 v12/]'(2) _- -2n~ B 2 (4.8) 

\ qint / 

Combined together, it is seen that nr is related to the gas density n by 

n = n f -  2B2n~ (4.9) 

Since the present treatment is a density expansion to terms quadratic in 
the density, it is appropriate to approximately solve Eq. (4.9) for nf as 
nf ~ n + 2B 2 n 2. 

Next is the equation of motion, in which the observable is the momen- 
tum density and whose expectation value is related to the stream velocity 
[see Eq. (4.6)]. Commutators can again be evaluated and the result cast in 
the standard form ~31"32) 

c~v o 
nm - ~ -  + nmvo" VVo = - V -  P (4.10) 

where the pressure tensor P = pK + p v consists of a kinetic contribution 

1 
PK--~m m (61PtPl +Pt61P~ + (Pt31Pl)~+ PtP~6t)  --nmVoVo (4.1!) 

(with superscript t denoting the tensor transpose) and a collisional transfer 
contribution 

p v _ _ ~  Tr12(r I _ r2) VI V12 

x 3 + ~  ( r~ - - r z ) - - r  d 2 ~ E p f ~ p f 2 ~ 2  (4.12) 
1 
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The kinetic part of the pressure tensor involves the full singlet density 
operator, whereas the collisional contribution has only the product of the 
free density operators. This is precisely of the form of the exact pressure 
tensor, except that the collisional part involves an approximate form for 
the pair density operator, namely that correct to second order in density 
and within the proposed correlation creation procedure of Eq. (3.4). 

At equilibrium in a homogeneous system, the pressure tensor is a 
multiple of the tensor identity, with the scalar pressure P being 1/3 of the 
(tensor) trace. Moreover, the delocalization integral over )~ can be trivially 
performed and the operator ~12lOflPf2~2 becomes proportional to the 
Boltzmann factor e x p ( -  HIZ)/kT). Thus, the equilibrium collisional transfer 
contribution to the scalar pressure is 

pv= -nfr A6 ~ "<2)/kT 
6q2n t - T r l z ~ l ( r l - r 2 ) ' :  e ~12, 

- n }  A3(2) 3/2 c~Vi2 e ~'re~'/kr (4.13) 
= ' "6qi2nt Tr~i~l(r 1 -- r2) �9 -~--r 1 

In the second from the center-of-mass dependence has been explicitly 
traced over to leave only the relative "rel" motion trace. For the kinetic 
contribution to the pressure, which arises from the full singlet density 
operator, there is first of all the free contribution, which is immediately 
evaluated as nfkT, and the correlation contribution 

p~ n.~ A6 ..~ n27 /?(2) 
12mq2nt Tr12[P1261 + 2P1" 61Pl + vl~'lJ "" 12 

=r(~A3(2)3/2 rel ( 2 3 ) /-7(2, re1) u12 
3mq2 m Tr12 p +~mkT (4.14) 

Correctly the stream velocity enters as a displacement in the Maxwellian, 
which is necessary to compensate the vo terms in Eq. (4.11), but the 
resulting pressure is the same as if v 0 was zero, so that this elaboration is 
ignored here for simplicity of presentation. To get the second form of 
Eq. (4.14),,it is necessary to express the operators in terms of relative and 
center-of-mass variables and then trace over the center-of-mass motion. 
This is conveniently done using the Weyl (33) correspondence, but the end 
result is that the delta function restricts the position integral and the 
momentum integration cancels a A 3 factor and on converting to center-of- 
mass and relative [ p _  �89  momenta, the center-of-mass kinetic 
energy contributes the 3mkT/2 term to the relative motion trace. 

If position and momentum operators commute (classical mechanics), 
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then the correlation part of the kinetic pressure becomes proportional to 
the second virial coefficient, namely 

Pffl class = --2/ ' / j3  kTB2, class (4.15) 

which corrects the free condition to the kinetic pressure so as to arrive at 
the classical kinetic pressure, 

PKI class = n f k T -  2n~ kTB2,c~as s = nk T (4.16) 

Within this classical approximation, the collisional transfer contribution to 
the pressure is 

- - / l  2 
PVlclass = 6 ' r J  r'aVe ~ Or v/kr dr=n2kTB2class' (4.17) 

using the classical virial expression for the second virial coefficient. Here n~ 
has been replaced by /1z, correct  to second order in the gas density. 

For quantum systems (that is, keeping the noncommutation of posi- 
tion and momentum) and using the relation (4.9) between n and ns, one 
can write the kinetic pressure conveniently as 

n2A3(2)3/2~ rel( 3 ) H(2,'rel~12 1 2  P~=nkT+ 3rnq~n t it12 p 2 - s m k T  =nkT+-~n kTel (4.18) 

Here the el notation of Imam-Rahajoe and Curtiss (34) has been introduced 
and it is noted that the leading term is nkT rather than n/kT. This is 
exactly the form for the kinetic pressure discussed earlier (m from the view- 
point of equilibrium cluster theory. It was also shown there (111 how the 
kinetic, Eq. (4.18), and collisional, Eq. (4.13), contributions to the pressure 
combine to give the standard equilibrium expression for the quantum 
second virial coefficient. In classical mechanics e~ vanishes and the 
separation of kinetic and collisional pressure contributions is the same as 
the separation of first and second virial coefficients. If position and 
momentum do not commute, these divisions are not the same. What is seen 
in the present formulation of density corrections to the Boltzmann 
equation is that the separation of kinetic and collisional contributions to 
the pressure is the same as that at equilibrium. 

Energy conservation is now discussed. The expression for the single- 
particle energy density is itself complicated by the requirements of operator 
symmetry. Thus, on subtracting the convective energy, the quantity of 
interest will be referred to as the kinetic energy density, 

+ _ 1 2 61] ncK=Trl[~_~(p~61 2pl.61pl+blP12)+(Hint,1 ~mVo ) ~P~a) 

(4.19) 
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The rate of change for this quantity is described in more detail than was 
the continuity equation or the equation of motion. Using the operator form 
for ~b as it appears in Eq. (4.19), the general equation of change, Eq. (4.3), 
becomes 

~ne  ~ C3Vo 
+ n m v o  �9 - -  

Ot c3t 

V'InVo [ K 1 2\ px .  
= -  t ~ + 2 m v ~  + q ~ +  %1 

1 2 1 
+ 2 my~ (nv~ + 7h Tr12[ {H~1)61 }*'' V12] - -  ~'~,2Pfl Pf2~'~2 (4.20) 

To obtain this result, care is needed to recognize that Vo depends on posi- 
tion r and time t. The kinetic contribution to the heat flux has the form 

t \ ~ -  )L ~ t- ) (4.21) 

where in Eqs. (4.20)-(4.21) the {.}, designates appropriately operator- 
symmetrized quantities. To evaluate the effect of the collisional term, a 
symmetrization is made between the two colliding particles; in particular, 
the delta function is rewritten in terms of symmetric and antisymmetric 
combinations, of which the antisymmetric leads to a gradient in the macro- 
scopic position. This naturally divides the collisional term into flux 
(gradient) and production effects. On carrying out this program, the colli- 
sional term in the kinetic energy equation of change can be written 

1 (1) 
~-~ T r l z [ { H 1  3l}s, V123- Q12PfzPTag2~2 = - V - ( q o o , ,  + P V ' v o )  + aK 

(4.22) 

where the collisional contribution to the heat flux is 

qoon=gTr12 d2(r l - r2)  6 r ( r l - r 2 )  
-1 2 2 

(1 0Vl2)  
• /~  [Hin t ,  1 __ Hint, 2, V123 _ 1 - -  m (Pl  q- P2 - -  2mVo)  �9 -~rl /3~ 

x ( 2 1 2 p f l p f z Y 2 ~ 2  (4.23) 
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and the production of kinetic energy is 

oK= Tr,2 (61+62)~EHint. l +Hint. 2, V12]- 

2m c~rl 
(2,2 ps, pf2/2~2 (4.24) 

On combining Eqs. (4.20) and (4.22) and eliminating the time derivative of 
Vo by use of the equation of motion (4.10), we find for the rate of change 
for the kinetic energy density 

~H~ K 

= - V "  (nVo eK + qK + q~on) -- P' : Vvo + oK (4.25) & 

The pressure tensor contribution is of course responsible for the coupling 
of convective energy and (internal) kinetic energy, but the presence of the 
collisional production term o K implies that kinetic energy (internal plus 
convective) is not conserved. 

Energy conservation is recovered by examining the potential energy 
density, which should be calculated and whose rate of change should be 
evaluated in a manner consistent with the binary-collision, second order in 
density, way in which the kinetic energy density is treated. This method of 
dealing with energy conservation is the same as that of Thomas and 
Snider. (7) Since the potential energy density is a two-particle observable, its 
expectation value is determined entirely by the pair density operator 

ne v =  ~Tr 12(~1 + (52) --12/-'V n (  2)12 (4.26) 

The time rate of change of the potential energy density is then determined 
up to second order in particle density by the pair yon Neumann equation, 
the connection with the Boltzmann equation being made in that the 
various terms in the equation of change for the potential energy density are 
to be evaluated using Eq. (3.3) for the pair density operator. According to 
this prescription, the equation of change for the potential energy density is 

~ne v 1 
at 4ih Tr'2[(6' + 62) V,2, HI22)] /-'12n(2) 

1 
4ihTr12{(al+a2)[V12, #(2)1 + [~ -{-' ~ 2 ,  /4(2)1 V12 "~ n(2)  - -  * ' 1 2  J 1 ~*12 J -  , P" 12 

= _ o K _ v .  (nvoeV+ qV) (4.27) 
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where the potential contribution to the heat flux is 

qV= 1 
~mm Trle(P131 + C~lPl) gl2~C~12Pfl/()/2~e~12 (4.28) 

Since the rate of production of potential energy exactly compensates the 
rate of production of kinetic energy, it follows that the total energy is 
conserved for the Boltzmann equation, correct to second order in density. 
At equilibrium the heat fluxes all vanish, but the expressions for these are 
the same as would be obtained from the exact BBGKY hierarchy if the 
density expansion of the density operators were cut off at second order and 
evaluated according to Eqs. (2.3), (2.4), and (3.4). 

5. D I S C U S S I O N  

Motivated by an attempt to reply to the criticisms of Laloa and 
Mullin (14) and by the distinction of free versus full density operators that 
Lalo6 has previously stressed, ~22-24) this paper reexamines how the 
Stosszaahlansatz is to be implemented in deriving a quantum Boltzmann 
equation. Whereas Lalo~ distinguishes between free and full motion for the 
pair density operator, here the emphasis is on the singlet density operator. 
Essential to the approach taken here is the notion that in a binary 
collision, each of the particles entering into collision must be free. In 
analogy with the equilibrium cluster expansion, the (full) singlet density 
operator has contributions from correlated particles, so that a product of 
full singlet density operators should not be used as the initial state for a 
binary collision, but rather a product of the free part of the singlet density 
operator. The correlation contribution to the singlet density operator is 
identified by analogy with the equilibrium cluster expansion, as is the divi- 
sion of the pair density operator into correlated and uncorrclated parts. 
The interrelations between the free and (binary) correlation contributions 
to the singlet and pair density operators are spelled out in Eqs. (2.3)-(2.4). 
At low gas densities, correlations arise (it being assumed that there are no 
bound states) only by means of binary collisions of free particles and the 
interaction is described using the Mr operator, Eq. (3.4). In this way the 
first BBGKY equation can be closed and becomes an equation for the free 
part Pr of the singlet density operator, Eq. (3.6). Consequences for the 
equations of change have been given in Section 4. 

Bound states have been explicitly excluded in this paper by assuming 
that the potential is not sufficiently attractive to support bound states. But 
it is somewhat clear how the possibility of bound states could be included 
in the formalism. Bound states consist of correlated pairs and thus these 
should contribute as an extra term in Eq. (3.4). Of course, within the pair 
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particle description given in this paper, such bound pairs cannot collide, 
but only contribute to gas properties by their free motion. This has been 
noted previously by Hawker. (35~ Collisions of bound pairs require three- 
and four-particle collisions as have been introduced in our theory of 
recombination and decay. (25) Extension of the present work to cover such 
a situation is planned. 

Bogolubov (15) postulates that after an initial transient, the distribution 
function (density operator p(N)) for the system is uniquely determined as a 
functional of the singlet distribution function (density operator p(l)). 
Bogolubov's method of determining this functional relation is essentially as 
follows: each sth-order density operator is given as a product of p(1) 
modified by interaction by following the state of the s particles back in time 
according to free motion and then forward an equal time interval 
according to interaction motion, as in Eq. (3.2) for s = 2. Here it is pointed 
out that if the s particles are to follow free motion before a collision, then 
they should be free before the collision. It is thus concluded that a more 
appropriate ansatz is to replace p(1) by pj in the construction of sth-order 
density operators. As a consequence, it is proposed to replace Bogolubov's 
function dependence of p(N) on p(1) by a functional dependence of p(N) on 
Pr. Thus, it is the free particle state that determines the state of the whole 
N-particle system. Another way of describing this state of affairs is to say 
that the free particle state carries along with it correlations of all the other 
particles. To the author, this point of view seems consistent with the 
Bogolubov philosophy and is an elaboration of that approach to describe 
gas kinetic behavior. 

The present paper includes only binary collisions and the binary 
correlations that arise from such collisions. But to sort out what part of the 
singlet density operator is free, it is necessary to identify the role of binary 
correlations in the whole gas (i.e., for all N particles). This is done by 
analogy with the equilibrium Ursell expansion. Appeal to this expansion 
has been made previously (36'37) in deriving the Boltzmann equation and its 
extension to higher gas density, but the present approach has a different 
emphasis, which might be described as a binary correlation expansion (see 
Section 2) with the pair Ursell operator identified as the binary correlation 
at equilibrium. Because all pairs of particles in the N-particle system have 
equal probability of being correlated, the singlet density operator, 
representing the ensemble average behavior of a particular particle (say 1), 
has contributions from N-particle states in which particle 1 is free and from 
N-particle states in which 1 is correlated to any of the other particles in the 
system. It is for this reason that the singlet density operator has both free 
and correlated contributions. For a pair of particles, each can be free, 
correlated together, or individually correlated to another particle in the 
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system. At equilibrium this property is explicitly displayed in Eq. (2.15). 
It is this structure that Eq. (2.4) incorporates. 

It is interesting to consider how this structure of the s-particle density 
operators could be generalized to include triple and higher-order correla- 
tions. Whereas the present treatment truncated the Ursell expansion at U (2) 
[see Eq. (2.9)], triple correlations can be included by retaining all U (3) 
terms in the expansion of the Boltzmann factor, Eq. (2.7). The resulting 
structure for the first three reduced density operators would be the 
generalization of Eqs. (2.20)-(2.21) and this used to generalize the structure 
of the reduced density operators in nonequilibrium situations, i.e., 
generalizations of Eqs. (2.3)-(2.4). This requires a three-particle correlation 
density operator p~3) for arbitrary nonequilibrium states. Here Bogolubov's 
solution to the initial value problem may be used to determine the 
correlation in terms of the free part of the singlet density operator; thus, in 
analogy to Eq. (3.4), it may be expected that 

p(3) _ t 
c 123 -- ~2123 Pf l  P f2 P f3 ,..(2 123 -- Pfl  g'2 23 P f2 P f3 ,..(2 23 

- -  pf2~r p f l  Pf3~'2~3 -- Pf3~212Pfl  Pf2~2~2 -~ 2Pfl Pf2P.f3 (5 .1)  

Again it has been assumed that no bound states exist. Clearly, this type of 
scheme can be generalized to include arbitrarily high-order correlation 
contributions. Insertion of the resulting expressions for the singlet and pair 
density operators into the first BBGKY equation gives a generalization of 
the Boltzmann equation to arbitrary density, in which pf is to be 
determined and from which the higher-order reduced density operators 
may be obtained using correlation calculations like Eqs. (3.4) and (5.1). In 
this way the functional dependence of p(N) o n  pf can be determined. It is 
also immediate that for a Maxwellian free density operator, all the correla- 
tion operators immediately take on their equilibrium Ursell operator forms 
and thus all equilibrium properties of the N-particle system are obtained. 
That the quantum Boltzmann equation at low gas density [-in the present 
terminology, at sufficiently low enough density so that the free and 
complete singlet operators agree, equivalently that Trzpcl 2 can be 
neglected in Eq. (2.3)] leads to a Maxwellian singlet density operator has 
been discussed. r It is a further question as to whether this can be proved 
when generalized to higher density. 

There may be other ways of closing the BBGKY hierarchy, for exam- 
ple, by allowing both the free and the binary correlation operators to be 
unknown [i.e., not use Eq. (3.4)]. In such a situation the first and second 
BBGKY equations might be used with closure attained using a suitable 
generalization of Eq. (5.1) which includes the pair correlation operator as 
an independent entity. 

822/61/1-2-30 
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A C K N O W L E D G M E N T S  

This  w o r k  was s u p p o r t e d  in pa r t  by the  N a t u r a l  Sciences  and  

E n g i n e e r i n g  Resea rch  C o u n c i l  of  C a n a d a .  I t h a n k  F r a n c k  Lalo~ for 

p r ep r in t s  of  his w o r k  a n d  for  m a n y  d iscuss ions  a b o u t  the  p r o b l e m s  wi th  

the  dens i ty  co r r ec t ions  to the  q u a n t u m  B o l t z m a n n  equa t ion .  
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